Author Affiliations
Abstract
1 State Key Laboratory for Modern Optical Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
3 Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, Tianjin 300072, China
4 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
On-chip polarization controllers are extremely important for various optical systems. In this paper, a compact and robust silicon-based on-chip polarization controller is proposed and demonstrated by integrating a special polarization converter and phase shifters. The special polarization converter consists of a 1×1 Mach–Zehnder interferometer with two polarization-dependent mode converters at the input/output ends. When light with an arbitrary state of polarization (SOP) is launched into the chip, the TE0 and TM0 modes are simultaneously excited. The polarization extinction ratio (PER) and the phase difference for the TE0/TM0 modes are tuned by controlling the first phase shifter, the polarization converter, and the second phase shifter. As a result, one can reconstruct the light SOP at the output port. The fabricated polarization controller, as compact as 150 μm×700 μm, exhibits an excess loss of less than 1 dB and a record PER range of >54 dB for arbitrary input light beams in the wavelength range of 1530–1620 nm.
Photonics Research
2024, 12(2): 183
Author Affiliations
Abstract
1 State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
3 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
4 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing. To cope with the ever-increasing amount of data being generated and consumed, ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded. In recent years, two-dimensional (2D) materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility. This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials, providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions. First, the concept and fundamental mechanisms of optical modulation with 2D materials are summarized. Second, a review of waveguide-integrated optical modulators employing electro-optic, all-optic, and thermo-optic effects is provided. Finally, the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.
optical modulation two-dimensional (2D) materials on-chip waveguide 
Journal of Semiconductors
2023, 44(11): 111301
Zejie Yu 1,3,4,*He Gao 1Yi Wang 2Yue Yu 2[ ... ]Daoxin Dai 1,3,4,5
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
2 Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
3 Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing 314000, China
4 Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
5 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
Photonic waveguides are the most fundamental element for photonic integrated circuits (PICs). Waveguide properties, such as propagation loss, modal areas, nonlinear coefficients, etc., directly determine the functionalities and performance of PICs. Recently, the emerging waveguides with bound states in the continuum (BICs) have opened new opportunities for PICs because of their special properties in resonance and radiation. Here, we review the recent progress of PICs composed of waveguides with BICs. First, fundamentals including background physics and design rules of a BIC-based waveguide will be introduced. Next, two types of BIC-based waveguide structures, including shallowly etched dielectric and hybrid waveguides, will be presented. Lastly, the challenges and opportunities of PICs with BICs will be discussed.
photonic waveguide bound states in the continuum integrated photonics 
Journal of Semiconductors
2023, 44(10): 101301
Shujun Liu 1Ruitao Ma 1Zejie Yu 1,2,3Yaocheng Shi 1,2,3,4Daoxin Dai 1,2,3,4,*
Author Affiliations
Abstract
1 Zhejiang University, College of Optical Science and Engineering, International Research Center for Advanced Photonics, State Key Laboratory for Extreme Photonics and Instrumentation, Hangzhou, China
2 Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing, China
3 Zhejiang University, Jiaxing Research Institute, Intelligent Optics and Photonics Research Center, Jiaxing, China
4 Zhejiang University, Ningbo Research Institute, Ningbo, China
A silicon-based digitally tunable positive/negative dispersion controller (DC) is proposed and realized for the first time using the cascaded bidirectional chirped multimode waveguide gratings (CMWGs), achieving positive and negative dispersion by switching the light propagation direction. A 1 × 2 Mach–Zehnder switch (MZS) and a 2 × 1 MZS are placed before and after to route the light path for realizing positive/negative switching. The device has Q stages of identical bidirectional CMWGs with a binary sequence. Thus the digital tuning is convenient and scalable, and the total dispersion accumulated by all the stages can be tuned digitally from - ( 2Q - 1 ) D0 to ( 2Q - 1 ) D0 with a step of D0 by controlling the switching states of all 2 × 2 MZSs, where D0 is the dispersion provided by a single bidirectional CMWG unit. Finally, a digitally tunable positive/negative DC with Q = 4 is designed and fabricated. These CMWGs are designed with a 4-mm-long grating section, enabling the dispersion D0 of about 4.16 ps / nm in a 20-nm-wide bandwidth. The dispersion is tuned from -61.53 to 63.77 ps / nm by switching all MZSs appropriately, and the corresponding group delay is varied from -1021 to 1037 ps.
silicon photonics dispersion tuning digital tuning multimode waveguide grating 
Advanced Photonics
2023, 5(6): 066005
Author Affiliations
Abstract
1 Zhejiang University, College of Optical Science and Engineering, Center for Optical and Electromagnetic Research, International Research Center for Advanced Photonics, State Key Laboratory for Modern Optical Instrumentation, Hangzhou, China
2 Zhejiang University, Ningbo Research Institute, Ningbo, China
3 Zhejiang University, Jiaxing Research Institute, Intelligent Optics and Photonics Research Center, Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing, China
Dealing with the increase in data workloads and network complexity requires efficient selective manipulation of any channels in hybrid mode-/wavelength-division multiplexing (MDM/WDM) systems. A reconfigurable optical add-drop multiplexer (ROADM) using special modal field redistribution is proposed and demonstrated to enable the selective access of any mode-/wavelength-channels. With the assistance of the subwavelength grating structures, the launched modes are redistributed to be the supermodes localized at different regions of the multimode bus waveguide. Microring resonators are placed at the corresponding side of the bus waveguide to have specific evanescent coupling of the redistributed supermodes, so that any mode-/wavelength-channel can be added/dropped by thermally tuning the resonant wavelength. As an example, a ROADM for the case with three mode-channels is designed with low excess losses of <0.6, 0.7, and 1.3 dB as well as low cross talks of < - 26.3, -28.5, and -39.3 dB for the TE0, TE1, and TE2 modes, respectively, around the central wavelength of 1550 nm. The data transmission of 30 Gbps / channel is also demonstrated successfully. The present ROADM provides a promising route for data switching/routing in hybrid MDM/WDM systems.
reconfigurability hybrid multiplexing subwavelength grating silicon photonics 
Advanced Photonics Nexus
2023, 2(6): 066004
Author Affiliations
Abstract
1 State Key Laboratory for Modern Optical Instrumentation, Center for Optical and Electromagnetic Research, International Research Center for Advanced Photonics, Ningbo Research Institute, College of Optical Science and Engineering, Zhejiang University, China
2 School of Physics, Xidian University, Xi’an 710071, China
3 e-mail: jingyechen@zju.edu.cn
An on-chip optical phased array (OPA) is considered as a promising solution for next generation solid-state beam steering. However, most of the reported OPAs suffer from low operating bandwidths, making them limited in many applications. We propose and demonstrate a high-speed 2D scanning OPA based on thin-film lithium niobate phase modulators with traveling-wave electrodes. The measured modulation bandwidth is up to 2.5 GHz. Moreover, an aperiodic array combined with a slab grating antenna is also used to suppress the grating lobes of far-field beams, which enables a large field of view (FOV) as well as small beam width. A 16-channel OPA demonstrates an FOV of 50°×8.6° and a beam width of 0.73°×2.8° in the phase tuning direction and the wavelength scanning direction, respectively.
Photonics Research
2023, 11(11): 1912
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 Imec USA, Nanoelectronics Design Center, Inc., 194 Neocity Way, Kissimmee, FL34744, USA
3 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications, such as lidar, radar, and artificial intelligence. Silicon photonics has unique advantages of ultra-high integration density as well as CMOS compatibility, and thus makes it possible to develop large-scale programmable optical signal processors. The challenge is the high silicon waveguides propagation losses and the high calibration complexity for all tuning elements due to the random phase errors. In this paper, we propose and demonstrate a programmable silicon photonic processor for the first time by introducing low-loss multimode photonic waveguide spirals and low-random-phase-error Mach-Zehnder switches. The present chip-scale programmable silicon photonic processor comprises a 1×4 variable power splitter based on cascaded Mach-Zehnder couplers (MZCs), four Ge/Si photodetectors, four channels of thermally-tunable optical delaylines. Each channel consists of a continuously-tuning phase shifter based on a waveguide spiral with a micro-heater and a digitally-tuning delayline realized with cascaded waveguide-spiral delaylines and MZSs for 5.68 ps time-delay step. Particularly, these waveguide spirals used here are designed to be as wide as 2 μm, enabling an ultralow propagation loss of 0.28 dB/cm. Meanwhile, these MZCs and MZSs are designed with 2-μm-wide arm waveguides, and thus the random phase errors in the MZC/MZS arms are negligible, in which case the calibration for these MZSs/MZCs becomes easy and furthermore the power consumption for compensating the phase errors can be reduced greatly. Finally, this programmable silicon photonic processor is demonstrated successfully to verify a number of distinctively different functionalities, including tunable time-delay, microwave photonic beamforming, arbitrary optical signal filtering, and arbitrary waveform generation.
silicon photonics programmable photonic integrated circuit waveguide delay lines Mach-Zehnder interferometer 
Opto-Electronic Advances
2023, 6(3): 220030
Author Affiliations
Abstract
1 State Key Laboratory for Modern Optical Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
3 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
A compact on-chip reconfigurable multichannel amplitude equalizer based on cascaded elliptical microrings is proposed and demonstrated experimentally. With the optimized structure of the elliptical microring with adiabatically varied radii/widths, the average excess loss for each channel in the initialized state is measured to be less than 0.5 dB, while the attenuation dynamic range can be over 20 dB. Flexible tunability through the overlapping of the resonance peaks of adjacent wavelength-channels enables even higher attenuation dynamic ranges up to 50 dB. Leveraging the thermo-optic effect and fine wavelength-tuning linearity, precise tuning of the resonance peak can be implemented, enabling dynamic power equalization of each wavelength-channel in wavelength-division-multiplexing (WDM) systems and optical frequency combs. The proposed architecture exhibits excellent scalability, which can facilitate the development of long-haul optical transport networks and high-capacity neuromorphic computing systems, while improving the overall performance of optical signals in WDM-related systems.
Photonics Research
2023, 11(5): 742
Author Affiliations
Abstract
1 Zhejiang University, College of Optical Science and Engineering, International Research Center for Advanced Photonics, State Key Laboratory for Modern Optical Instrumentation, Hangzhou, China
2 Zhejiang University, Jiaxing Research Institute, Intelligent Optics & Photonics Research Center, Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, China
3 Zhejiang University, Ningbo Research Institute, Ningbo, China
Compact passive silicon photonic devices with high performance are always desired for future large-scale photonic integration. Inverse design provides a promising approach to realize new-generation photonic devices, while it is still very challenging to realize complex photonic devices for most inverse designs reported previously due to the limits of computational resources. Here, we present the realization of several representative advanced passive silicon photonic devices with complex optimization, including a six-channel mode (de)multiplexer, a broadband 90 deg hybrid, and a flat-top wavelength demultiplexer. These devices are designed inversely by optimizing a subwavelength grating (SWG) region and the multimode excitation and the multimode interference are manipulated. Particularly, such SWG structures are more fabrication-friendly than those random nanostructures introduced in previous inverse designs. The realized photonic devices have decent performances in a broad bandwidth with a low excess loss of <1 dB, which is much lower than that of previous inverse-designed devices. The present inverse design strategy shows great effectiveness for designing advanced photonic devices with complex requirements (which is beyond the capability of previous inverse designs) by using affordable computational resources.
silicon photonics inverse design subwavelength grating structures mode (de)multiplexers wavelength (de)multiplexers 90 deg hybrids 
Advanced Photonics Nexus
2023, 2(2): 026005
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Higher-Education Mega-Center, Guangzhou 510006, China
2 National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
3 State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
4 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
5 Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects. Thin-film lithium niobate (TFLN) photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems. Combining a coarse wavelength-division multiplexing (CWDM) devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators, we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time. The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel (i.e., an aggregated date rate of 400 Gb/s).Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects. Thin-film lithium niobate (TFLN) photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems. Combining a coarse wavelength-division multiplexing (CWDM) devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators, we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time. The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel (i.e., an aggregated date rate of 400 Gb/s).
Journal of Semiconductors
2022, 43(11): 112301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!